Acronyms and Abbreviations

A

ab: abelian

abs: absolute (value)

AC: axiom of choice

ACC: ascending chain condition

a.e.: almost everywhere

alg.: algebra

arg: argument of

a.s.: almost surely

asym: asymmetric, asymmetric

asso: associative

aut: automorphism

B

bd: boundary

BVP: boundary value proble

BWOC: by way of contradiction

C

calc: calculus, calculation

can: canonical (map)

card: cardinality, cardinal

cat.:category

CBS ineq.: Cauchy-Bunyakovsky-Schwartz inequality

cd: commutative diagram

CGWH: compactly generated weak Hausdorff

CH: continuum hypothesis

cl: closure

clsd: closed

cncv: concave

cntd: connected

cnvx: convex

codom, cod: codomain

coker, cok: cokernel

comm.: commutative

const: constant

conti.: continuous

Cor: corollary

cpt: compact

cpx,cx: complex

D

DC: axiom of dependent choice

DCC: decending chain condition

def: define, definition

dim: dimension

E

end: endomorphism

epi: epimorphism

eqn: equation

equiv.: equivalence, equivalent

ETS: enough to show

evec: eigenvector

eval: eigenvalue

F

f.d.: finite dimentional

fib: fibration, fiber

fin.: finite

FOL: first-order logic, first-order language

FT: Fourier transformation

FTC: fundamental theorem of calculus

func, fcn: function

G

gen’d: generated

glb: greatest lower bound

g.l.b.p.: greatest-lower-bound property

grp, gp: group

H

HEP: homotopy extension property

hom: homomorphism, homomorphic

homeo: homeomorphism, homeomorphic

hol: holomorphic (function)

I

id: identity

iff: if and only if

IH: induction hypothesis

im: image

Im: imaginary part

inc: inclusion map

inf: infimum

inj: injective

int: interior

inv: inverse, invariant

isom: isomorphism

IVP: initial value problem

L

LCH: locally compact Hausdorff

lem: lemma

LES, l.e.s.: long exact sequence

LHS: left-hand side

lim: limit

lin.: linear

lo: linear order

loset: linearly ordered set

lub.: least upper bound

l.u.b.p.: least-upper-bound property

M

max: maximum

mero: meromorphic (function)

mfd: manifold

min: minimum

MK: Morse-Kelley set theory

mod: modulo, modulus

mon: monoid

mono: monomorphism

MONS: maximal orthonormal system

mor: morphism

m-sble: measurable

N

nat. : natural

NGB: von Neumann-Bernays-Gödel set theory

NTS: need to show

n.v.s.: normed vector space

O

ode: ordinary differential equations

ONB: orthonormal basis

op.: operation, operator

ord: order, ordinal

P

pde: partial differential equatnions

pdf: probability distribution function

perm: permutation

pf: proof

po: partial order

poly.: polynomial

poset: partially ordered set

pr.: probability

prod.: product

prop: property

Q

QED: quantum eletrodynamics

Q.E.D.: (Quod erat demonstrandum) which was to be demonstrated

QFT: quantum field theory, quantum Fourier transformation

quant, q: quantum

QM: quantum mechanics

QT: quantum theory

R

ran: range

Re: real part

rel.: relation

resp.: respectively

RHS: right-hand side

rk: rank

rmk: remarks

RTP: required to prove

RTS: remain to show

S

seq.: sequence

SES, s.e.s.: short exact sequence

s.t.: such that, so that, subject to

sol: solution

sp.:space

spec: spectrum

spx, sx: simplex

sup: supremum

surj: surjective, surjection

symm, sym: symmetric, symmetry

T

TFAE: the following are equivalent

thm: theorem

top.: topology

tr.: trace, transformation

trans: transitive

U

univ.: universal

V

v.s.: vector space

W

wff: well-formed formula

WLOG: without loss of generality

WMA: we may assume

w.r.t.: with respect to, with regard to

WTP: want to prove

WTS: want to show, wish to show

Z

ZF: Zermelo-Fraenkel set theory

ZFC: Zermelo-Fraenkel set theory with the axiom of choice

Futher reading

  1. Glossary of mathematical jargon - Wikipedia
  2. List of mathematical abbreviations - Wikipedia
  3. Glossary of mathematical symbols - Wikipedia