Statement
Let ${ (X,\langle \cdot,\cdot \rangle) }$ be a inner product space. Then,
\(\lvert \langle x,y \rangle \rvert \le \lVert x \rVert \lVert y \rVert\) and the equality holds iff ${ \alpha x + \beta y = \mathbf{0} }$ for some scalars ${ \alpha,\beta }$ s.t. ${ \alpha \beta \neq 0 }$.
The inequality called Cauchy-Schwarz inequality or Cauchy-Bunyakovsky-Schwarz (CBS) inequality
proof
If ${ y=\mathbf{0} }$,
\(\lvert \langle x,0 \rangle \rvert = \lVert x \rVert \lVert \mathbf{0} \rVert\) Suppose ${ y \neq \mathbf{0} }$, and let
\[z = x - \frac{\langle x,y \rangle}{\langle y,y \rangle}y\]Then,
\[\langle z,y \rangle = \langle x,y \rangle - \langle x,y \rangle = 0\]Therefore ${ z \perp y }$ and
\[x= \frac{\langle x,y \rangle}{\langle y,y \rangle }y + z\]which gives
\[\lVert x \rVert^{2} = \left\lvert \frac{\langle x,y \rangle}{\langle y,y \rangle}\right\rvert^{2}\lVert y\rVert^{2} + \lVert z \rVert^{2} = \frac{\lvert \langle x,y \rangle\rvert^{2}}{\lVert y \rVert^{2}} + \lVert z \rVert^{2} \ge \frac{\lvert \langle x,y \rangle\rvert^{2}}{\lVert y \rVert^{2}}\]Therefore,
\[\lVert x \rVert^{2} \lVert y \rVert^{2} \ge \lvert\langle x,y \rangle\rvert^{2}\]The equality holds iff ${ z = \mathbf{0} }$ i.e.,
\[\langle y,y \rangle x-\langle x,y \rangle y =0\]